Parallel cosine nearest neighbor graph construction
نویسندگان
چکیده
منابع مشابه
Parallel k Nearest Neighbor Graph Construction Using Tree-Based Data Structures
Construction of a nearest neighbor graph is often a necessary step in many machine learning applications. However, constructing such a graph is computationally expensive, especially when the data is of high dimensionality. In this work, we focus on the use of two tree structures, k-d trees and ball trees, to implement nearest neighbor graph construction. We present parallel implementations of n...
متن کاملParallel Construction of k-Nearest Neighbor Graphs for Point Clouds
We present a parallel algorithm for k-nearest neighbor graph construction that uses Morton ordering. Experiments show that our approach has the following advantages over existing methods: (1) Faster construction of k-nearest neighbor graphs in practice on multi-core machines. (2) Less space usage. (3) Better cache efficiency. (4) Ability to handle large data sets. (5) Ease of parallelization an...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملPercolation in the k-nearest neighbor graph
Let P be a Poisson process of intensity one in R2. For a fixed integer k, join every point of P to its k nearest neighbors, creating a directed random geometric graph ~ Gk(R). We prove bounds on the values of k that, almost surely, result in an infinite connected component in ~ Gk(R) for various definitions of “component”. We also give high confidence results for the exact values of k needed. I...
متن کاملA Parallel Algorithms on Nearest Neighbor Search
The (k-)nearest neighbor searching has very high computational costs. The algorithms presented for nearest neighbor search in high dimensional spaces have have suffered from curse of dimensionality, which affects either runtime or storage requirements of the algorithms terribly. Parallelization of nearest neighbor search is a suitable solution for decreasing the workload caused by nearest neigh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Parallel and Distributed Computing
سال: 2019
ISSN: 0743-7315
DOI: 10.1016/j.jpdc.2017.11.016